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Abstract With increasing globalization, communication across language and cul-
tural boundaries is becoming an essential requirement of doing business, delivering
education, and providing public services. Due to the considerable cost of human trans-
lation services, only a small fraction of text documents and an even smaller percentage
of spoken encounters, such as international meetings and conferences, are translated,
with most resorting to the use of a common language (e.g. English) or not taking
place at all. Technology may provide a potentially revolutionary way out if real-time,
domain-independent, simultaneous speech translation can be realized. In this paper, we
present a simultaneous speech translation system based on statistical recognition and
translation technology. We discuss the technology, various system improvements and
propose mechanisms for user-friendly delivery of the result. Over extensive component
and end-to-end system evaluations and comparisons with human translation perfor-
mance, we conclude that machines can already deliver comprehensible simultaneous
translation output. Moreover, while machine performance is affected by recognition
errors (and thus can be improved), human performance is limited by the cognitive
challenge of performing the task in real time.
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Abbreviations
AMI Meeting transcription data from Augmented Multi-party Interaction

(see Table 3)
ASR Automatic speech recognition
BN Data from broadcast news corpora (see Table 3)
CHIL Computers in the human interaction loop
cMLLR Constrained maximum likelihood linear regression
DG Directorate general
EC European Commission
EM Expectation maximization
EPPS European Parliament plenary sessions
GALE Global Autonomous Language Exploitation
GWRD Data from Gigaword corpus (see Table 3)
HNSRD Data from UK Parliament debates (see Table 3)
ICSI (Data recorded at) International Computer Science Institute
JRTk Janus Recognition Toolkit
MLLR Maximum likelihood linear regression
MT Machine translation
MTG Meeting transcription data (see Table 3)
NIST National Institute of Standards and Technology—MT evaluation

measure (Doddington 2002) Data recorded at NIST
OOV Out of vocabulary
PROC Data from conference proceedings (see Table 3)
RTF Real-time factor
RT-06S NIST 2006 Rich Transcription evaluation
RWTH Rheinisch-Westfälische Technische Hochschule (Aachen)
SMNR Lectures and seminars from the CHIL project
SMT Statistical machine translation
SRI Stanford Research Institute
SST Speech-to-speech translation
STR-DUST Speech TRanslation: Domain-Unlimited, Spontaneous and Trainable
SWB Data from switchboard transcriptions (see Table 3)
TC-STAR Technologies and Corpora for Speech-to-Speech-Translation
TED Translanguage English database
TH Technische Hochschule
TTS Text to speech
UKA-. . . See Table 3
UW-M See Table 3
VAD Voice activity detection
VTLN Vocal tract length normalization
WER Word error rate
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1 Introduction

With advancing globalization, effective cross-cultural communication is rapidly
becoming an essential part of modern life. Yet, an estimated 4,000 to 6,000 languages
still separate the people of the world, and only a small intellectual elite gather by agree-
ing to communicate in a common language, usually English. This situation creates a
dilemma between a need to integrate and interact and the need to maintain cultural
diversity and integrity. It also limits international discourse to an adopted communica-
tion medium that does not always reflect the culturally nuanced, individual subtleties
of the global human experience. To provide access to other languages unimpeded,
however, requires translation, but due to the enormous cost of human translation, only
a small fraction of text documents are presently translated and only a handful of human
spoken encounters are actually interpreted, if they even take place at all as a result of
the separation.

All this could change if affordable, real-time, simultaneous speech-to-speech trans-
lation (SST) was possible by machine. Machines never suffer fatigue, nor are they lim-
ited in principle by memory size or processing speed. They could potentially also open
communication channels between uncommon spoken languages, so as to broaden the
exchange and interaction between the people of the world.

As a result, automatic SST as a research endeavor has been enjoying increas-
ing attention. After humble first beginnings in the 1990s, when limited phrase-based
and first domain-dependent speech translation systems were proposed (Waibel et al.
1991; Morimoto et al. 1993) large-scale domain-unlimited translation systems are now
beginning to emerge (Waibel and Fügen 2008). Three recent projects in particular have
begun to advance the state of the art from domain-dependent to domain-independent
capabilities: the NSF-ITR project STR-DUST, the EC-IP project TC-STAR, and the
DARPA project GALE (see Sect. 3 for more details about these projects). They bring
within reach the translation of broadcast news and political speeches between several
major languages.

As systems developed within these three projects focus on the offline processing of
huge data material, translation quality instead of speed was of primary importance. As
we will show in this paper, however, even simultaneous domain-unlimited translation is
possible thereby opening up the range of applications to interactive lectures, seminars,
speeches, and meetings. To do so, we have combined advances in speech translation
technology from these projects with advances in human interface technology devel-
oped under the European Commission (EC) integrated project CHIL (Computers in
the Human Interaction Loop) (Waibel et al. 2004; Waibel and Stiefelhagen 2009).

While the work within CHIL focused on the delivery and interface aspect of a
simultaneous translation service and the integration into the Smart Room, core rec-
ognition and translation components were advanced under TC-STAR. In the present
paper, we describe how these technologies were extended to deliver real-time simul-
taneous speech translation of spontaneous lectures. We will discuss how the added
requirements found in technical university lectures and seminars, such as real-time
performance, online sentence-level segmentation, special terms for lecture vocabular-
ies, and disfluencies, can be addressed. In human user experimentation, finally, we
will attempt to establish an assessment of whether simultaneous lecture translation
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is possible and if current output can lead to usable results. We will conclude that,
while human interpreters are achieving a higher translation quality, automatic sys-
tems can already provide usable information for people who would otherwise be
unable to understand the source-language lecture. Moreover, we will see that present
system performance trails human performance by less than expected as human trans-
lators suffer from cognitive limitations in face of the real-time performance require-
ment.

1.1 Differences between interpreting and translating

Although the terms “translation” and “interpreting” are used interchangeably in every-
day speech, they vary greatly in meaning. Both refer to the transfer of meaning between
two languages. However, translation refers to the transfer of meaning from text to text,
often with time and access to resources such as dictionaries, glossaries, etc. On the
other hand interpreting consists of facilitating oral or sign language communication,
either simultaneously or consecutively, between two or more speakers who are not
speaking the same language.1 The profession expects interpreters to be more than
80% accurate and translations, by contrast, over 99% accurate.2

Simultaneous interpreting is sometimes incorrectly referred to as “simultaneous
translation” and the interpreter as the “translator”. However, in computer science the
term “machine translation” (MT) is commonly used for systems translating text or
speech from one language to another. The reason for this is that in the past the main
focus of MT was the translation of text and only recently is SST attracting a wider
interest. Therefore, throughout this paper we use the term translation as in “SST”,
“simultaneous translation” or “simultaneous speech translation” to mean the auto-
matic interpretation of spoken language.

1.2 Outline

The paper is structured as follows. In Sect. 2, challenges and advantages of human inter-
pretation and automatic simultaneous translation are compared. Section 4 then explains
a first baseline system for simultaneous translation, which is then further adapted to
achieve a lower latency and better translation quality. The necessary techniques used
for speaker and topic adaptation are explained in Sect. 5. Section 6 copes with the
problem of finding a chunking of the speech recognizer’s output which achieves an
optimal translation performance. Therefore, different chunking strategies are com-
pared in an empirical study. The overall simultaneous translation system, its architec-
ture and information flow is presented in Sect. 7, and Sect. 8 discusses the latency and
real-time issues of such a system and possible solutions. Section 9 concentrates on
the automatic and human end-to-end evaluation of the simultaneous lecture translator.
Finally, Sect. 10 concludes the paper.

1 Wikipedia entry “Interpreting”, http://en.wikipedia.org/wiki/Interpreting, accessed 20 June 2007.
2 Wikipedia entry “Translation”, http://en.wikipedia.org/wiki/Translation, accessed 20 June 2007.

123

http://en.wikipedia.org/wiki/Interpreting
http://en.wikipedia.org/wiki/Translation


Simultaneous translation of lectures and speeches 213

2 Human interpretation versus automatic simultaneous translation

Anyone speaking at least two different languages knows that translation and especially
simultaneous interpreting are very challenging tasks. A human translator has to cope
not only with the special nature of different languages like terminology and compound
words, idioms, dialect terms or neologisms, unexplained acronyms or abbreviations
and proper names, but also with stylistic differences and differences in the use of
punctuation between two languages. And, translation or interpretation is not a word-
by-word rendition of what was said or written in a source language; instead the meaning
and intention of a given sentence has to be re-expressed in a natural and fluent way in
another language.

2.1 Translating and interpreting in the EC

The majority of professional full-time conference interpreters work for international
organizations like the United Nations, the European Union, or the African Union,
whereas the world’s largest employer of translators and interpreters is currently the
EC with its two Directorate Generals for Translation and Interpretation.3

The Directorate General (DG) for Interpretation is the EC’s interpreting service and
conference organizer and provides interpreters for about 50–60 meetings per day in
Brussels and elsewhere. The language arrangements for these meetings vary consider-
ably, from consecutive interpreting between two languages, for which one interpreter
is required, to simultaneous for 23 or more languages, which requires at least 69 inter-
preters. At present, the Council of the European Union accounts for around 46% of the
interpreting services provided, followed by the Commission itself with around 40%.
There are more than 500 staff interpreters, accompanied by 2,700 accredited freelance
interpreters.4

In 2006, the European Parliament spent about e300 million, or 30% of its budget,
on the interpretation and translation of the parliamentary speeches and EU documents.
In total, approximatelye1.1 billion are spent per year for the translating and interpret-
ing services within the European Union, which is around 1% of the total EU budget
(Accipio 2006, p. 23).

2.2 Challenges in human interpretation

According to Al-Khanji et al. (2000), researchers in the field of psychology, linguistics
and interpretation like Henderson (1982), Hendricks (1971) and Seleskovitch (1978)
seem to agree that simultaneous interpreting is a highly demanding cognitive task
involving a basic psycholinguistic process. These processes require the interpreter to
monitor, store and retrieve the input of the source language continuously in order to

3 See http://europa.eu.int/comm/dgs/translation/index_en.htm and http://ec.europa.eu/scic, both accessed
29 October 2008.
4 DG for Interpretation webpage “What we do”, http://scic.ec.europa.eu/europa/jcms/c_5204/
what-we-do-faq, accessed 20 June 2007.
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produce the oral rendition of this input in the target language. It is clear that this type
of difficult linguistic and cognitive operation will force even professional interpreters
to resort to elaborate lexical or synthetic search strategies.

Fatigue and stress negatively affect the interpreter, leading to a decrease in interpret-
ing quality. In a study by Moser-Mercer et al. (1998) in which professional speakers
were told to work until they could no longer provide acceptable quality it was shown
that (a) during the first 20 minutes the frequency of errors rose steadily, (b) the inter-
preters however appeared to be unaware of this decline in quality, (c) at 60 minutes,
all subjects combined committed a total of 32.5 meaning errors, and (d) in the cate-
gory of nonsense the number of errors almost doubled after 30 minutes on the task. In
experiments with students and professional interpreters, Al-Khanji et al. (2000) found
that the most frequent compensatory strategies, which are also used in such situations,
are—in the order of occurrence—skipping, approximation, filtering, comprehension
omission, and substitution. Therefore, in Vidal (1997), the conclusion was drawn that
interpreters should work in teams of two or more and have to be exchanged every
30 minutes. Otherwise, the accuracy and completeness of simultaneous interpreters
decreases precipitously, falling off by about 10% every five minutes after holding a
satisfactory plateau for half an hour.

2.2.1 Fluency and the ear–voice span

Since the audience is able to evaluate the simultaneously interpreted discourse only by
its form, the fluency of an interpretation is of utmost importance. According to a study
by Kopczynski (1994, pp. 87–100), fluency and style was third on a list of priorities of
elements rated by speakers and attendees that contribute to quality after content and
terminology. Following the overview in Yagi (2000), an interpretation should be as
natural and as authentic as possible, which means that artificial pauses in the middle
of a sentence, hesitations, and false starts should be avoided (Jones 1998), and tempo
and intensity of the speaker’s voice should be imitated (Kopczynski 1994).

Another point to mention is the time span between a source-language chunk and
its target-language chunk, which is often referred to as “ear–voice span”, “delay”, or
“lag”. Following the summary in Yagi (2000), the ear–voice span is variable in dura-
tion depending on some source- and target-language variables, like speech delivery
rate, information density, redundancy, word order, syntactic characteristics, and so on.
Nevertheless, the average ear–voice span for certain language combinations has been
measured by many researches, but the range varies largely from two to six seconds
(Barik 1969; Lederer 1978), depending on the speaking rate. Short delays are usually
preferred for several reasons. For example, the audience is irritated when the delay
is too large and is soon asking whether there is a problem with the interpretation.
Another reason is that a short delay facilitates the indirect communication between
the audience and the speaker but also between people listening to the interpreter and
to the speaker. Therefore, interpreters tend to increase their speaking rate when the
speaker has finished. In English, a latency of about two to six seconds is equivalent
to a delay of about 4 to 12 words, since the average speaking rate is about 120 words
per minute (Ramabhadran et al. 2003; Yuan et al. 2006).

123



Simultaneous translation of lectures and speeches 215

Fig. 1 Comparison of automatic and human interpretation performance judged by humans in the project
TC-STAR

2.3 Advantages of a simultaneous translation system

Given the explanations above on human interpretation in general and in the EC in
particular, one has to weigh two factors when considering the use of simultaneous
translation systems: cost and translation quality. The comparative results of TC-STAR
in Fig. 1 (Hamon et al. 2007) between human interpretation and automatic speech
translation show that SST was judged worse when compared to human interpretation
in most categories, but when it comes to the transfer of content both were judged nearly
equal. The reason why even human interpretation is not reaching perfect results is due
to the compensatory strategies mentioned above under which translation quality suf-
fers. This means that for people not understanding the speaker’s language at all such
an automatic translation could be of great help. Furthermore, if there is additional
information about, for example, the speaker or the topic of the speech available, adap-
tation techniques could be used to increase the overall performance of an automatic
system. But in contrast to TC-STAR, where no real-time requirements were given, a
simultaneous translation system has to deliver the translation with a latency as small
as possible, and might therefore not achieve the same translation quality.

Another advantage of a simultaneous translation system compared to a human inter-
preter is the abundance of short-term memory: storing long sequences of words is not a
problem for a computer system. Therefore compensatory strategies are not necessary,
independently of the speaking rate of the speaker. However, depending on the system’s
translation speed it might not be able to keep up with the speaker, and, while it might
be possible for humans to compress the length of an utterance without destroying
the meaning (summarization), it is still a very challenging task for automatic systems
(Mani 2001; Zechner 2002; Furui 2007).

At e300–400 per hour translator time, human simultaneous interpretation is quite
expensive. Usually two interpreters are necessary and time for preparation and post-
processing must be considered additionally. Furthermore, simultaneous interpretation
requires a soundproof booth with audio equipment, which can be rented, but it adds
overall cost that is unacceptable for all but the most elaborate multilingual events. On
the other hand, a simultaneous translation system needs time and effort for preparation
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and adaptation towards the target application, language and domain. Depending on the
required translation quality, the costs can therefore exceed those for a human interpre-
tation. However, the major advantage of an automatic system is that once it is adapted
it can be easily re-used in the same domain, language etc. A single laptop together
with a microphone might already be sufficient.

To some extent, even generalization should not be a problem for automatic sys-
tems. Due to the manner in which such systems are trained, expressions not directly
within the required domain, but closely related to it, are already covered by the system.
Furthermore, adaptation techniques can be used to extend the coverage and quality,
especially in situations where simultaneous translations into multiple languages are
required, automatic systems are advantageous, because only the translation modules
have to be extended with new target languages, while the rest of the system can be
kept unchanged. Another advantage is that the transcript of a speech or lecture in the
source and target languages is produced for free by using an automatic system. In the
EU, for example, these transcripts can be used as an initial version of the protocols
which have to be prepared anyway. This also allows for thinking about other possible
delivering technologies beyond the traditional headphones.

Given the limitations of the recognition and translation capabilities of current SST
systems and the system development costs compared to human interpreters, possible
application scenarios for simultaneous speech translation are restricted to domains to
which a system can be well adapted and applications in which a system can be re-used
and modified or customized with less effort. Therefore, we selected the lecture scenario
as our target scenario, in which a single speaker is talking about a specific topic to a
larger audience. Hence, small talks, student seminars or parliamentary speeches also
belong to this scenario. However, it should be noted that finding an optimal balance
between quality and speed is always a difficult task to undertake.

3 Spoken language translation

A spoken language translation system always consists of the two main components,
an automatic speech recognition (ASR) system and an MT system. In addition, other
components are typically required as for example for preparing the speech recognizer’s
output for the MT system in order to achieve high translation quality. Output may or
may not be in the form of speech, in which case speech synthesis is also invovled.

Figure 2 gives a schematic overview of the simultaneous translation architecture
treated in this paper together with required databases and models. From the contin-
uous input stream of speech, the ASR component produces a continuous stream of
partial first-best hypotheses, which is resegmented into appropriate chunks for the
MT component. The MT component translates each of these source-language chunks
into the target language. By using multiple MT components translation can be done
in parallel into different target languages at the same time. For delivering the trans-
lation output, different technologies may be used among which the most prominent
are either subtitles or speech synthesis. A more detailed description will be given in
Sect. 7.
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Fig. 2 Schematic overview of the simultaneous translation architecture treated in this paper. Boxes
re-present the components of the system, and ellipses the models used by the components. As databases,
dictionaries and vocabularies are used

3.1 Speech translation projects

In the following, some related research projects such as STR-DUST, TC-STAR, and
GALE are described in more detail.

STR-DUST (Speech TRanslation: Domain-Unlimited, Spontaneous and Train-
able),5 an NSF-ITR project launched in 2003 at Carnegie Mellon University, aimed to
address the problem of domain independence. The goal of the project was to explore
translation under the added challenge of domain independence and spontaneous lan-
guage. The project studied summarization and disfluency removal techniques for dis-
fluent spoken language, such as spontaneous lectures and meetings, and integrated
them in domain-unlimited spontaneous translation systems. It focused on highly dis-
fluent speech such as dialogs and spontaneous speech without domain restrictions. It
also explored improving and training open-domain speech translators using human
interpreter speech.

TC-STAR (Technologies and Corpora for Speech-to-Speech-Translation),6 an EC-
financed project that started in April 2004 within the “6th Framework Programme”,
was a large-scale, long-term effort to advance the performance of all necessary core
technologies for high-performance domain-independent SST, i.e. ASR, MT and text-
to-speech (TTS). The objective of the project was to make a breakthrough in SST
that significantly reduces the gap between human and machine translation perfor-
mance. The focus was on the development of new algorithms and methods. The project
achieved these targets in only three years, by reducing the ASR error rate from 30% to
7%, and establishing understandable end-to-end translation output. It was a communal
project of several partners, and data recordings, transcriptions or speeches from the
European Parliament, and broadcast news were used. Systems in three languages were
developed: European English, European Spanish, and Mandarin Chinese.

The goal of the DARPA GALE (Global Autonomous Language Exploitation) pro-
gram7 is to develop and apply computer software technologies to absorb, analyze and

5 See http://isl.ira.uka.de/index.php?id=17, accessed 29 October 2008.
6 See http://www.tc-star.org, accessed 29 October 2008.
7 See http://www.darpa.mil/ipto/programs/gale/gale.asp, accessed 29 October 2008.
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interpret huge volumes of speech and text in multiple languages. Automatic processing
engines will convert and distill the data, delivering pertinent, consolidated information
in easy-to-understand forms to military personnel and monolingual English-speaking
analysts in response to direct or implicit requests. In contrast to TC-STAR, the output
of each engine is English translated text only and no speech synthesis is used. Instead,
a distillation engine is responsible for integrating information of interest to its user
from multiple sources and documents. The input to the transcription engine is speech,
currently with a main focus on Arabic and Chinese. Military personnel will interact
with the distillation engine via interfaces that could include various forms of human–
machine dialog (not necessarily in natural language).

The focus in these projects was to achieve high-quality translations without pay-
ing attention to the latency or processing time. As a result, the architectures of the
systems developed within these projects are more complicated compared to the archi-
tecture presented above. Within TC-STAR, individual system components developed
by the project partners were combined at both the ASR and MT stage into a distributed
TC-STAR system. This resulted in significant performance improvements with respect
to performance of the single systems. For ASR, several transcription systems were
combined based on ROVER (Fiscus 1997). The final TC-STAR system output was
then generated by combining the output of up to six state-of-the-art statistical phrase-
based translation systems from different project partners into a consensus translation.
The individual systems used different additional features in log-linear model combina-
tion, including continuous space language models, local reordering based on manually
created or automatically learned part-of-speech templates, nonlocal reordering based
on parsing, word disambiguation using morphosyntactic information, clustered lan-
guage models and sentence mixture language models that model topic dependency
of sentences, bilingual n-gram translation models, and additional techniques such as
punctuation prediction, n-best list rescoring, and morphology reduction in prepro-
cessing. More details on the individual systems as well as on the system combination
algorithm can be found in Matusov et al. (2008).

In GALE, similar techniques are used for system combination.

3.2 Performance measures

In the following, some automatically computable performance measures will be
described briefly. They are used to judge the quality and speed of the subcompo-
nents of the simultaneous translation system, as well as the system’s overall latency.
Compared to human judgement, automatically computable performance measures are
preferred especially during system development, to accelerate the turn-around time of
the necessary experiments.

Perplexity: The perplexity is a measure of language model performance and is
based on the entropy, a measure of uncertainty associated with a random variable
in the field of information theory.
OOV rate: The OOV (out-of-vocabulary) rate is defined as the percentage of word
occurrences in a corpus which are not covered by the vocabulary.
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WER: The word error rate (WER) is a standard metric to measure the quality
of an ASR system. It is derived from the Levenshtein or minimum edit distance
and is defined as the minimum edit distance between a given hypothesis and its
reference transcription normalized by the length of the reference transcription in
words.
Bleu: The Bleu score (Papineni et al. 2002) together with the NIST score (see
below) are standard metrics for automatically measuring the quality of an MT sys-
tem. Both are based on the idea of a modified n-gram precision based on n-gram
co-occurrence statistics. Bleu is defined as the geometric mean of modified n-gram
precision scores pn multiplied by a brevity penalty.
NIST: Compared to the Bleu score, the NIST score (Doddington 2002) mainly
differs in two characteristics. First, it uses an information criterion via which n-
grams that occur less frequently, and are therefore more informative, are weighted
higher. Second, it differs in the brevity penalty factor insofar as the impact of small
variations in the translation length is minimized.
RTF: The real-time factor (RTF) describes the ratio between the duration d of
an input and the time p necessary to process that input. The RTF is always
machine dependent and is always computed in this work on an Intel Pentium
D with 3GHz and 4GB of memory running under SuSE Linux 10.0. The Janus
executable was compiled with the Intel C++ Compiler v9.1 using auto-
vectorization
Latency: The latency describes the delay of a system between the input at time
i and the processed output of the given input at time o. In this work, the latency
describes the delay until a given speech segment is recognized, translated, and
output, and will be measured in words or seconds.
Precision, Recall, and f-measure: Precision and recall are two measures widely
used to evaluate the quality of information retrieval systems. In this context, recall
describes the completeness of a search result and precision its accuracy. In the
interest of having a single performance measure, the f-measure is defined as the
weighted harmonic mean of precision and recall.

It is known from the literature (Klakow and Peters 2002) that there is a positive
almost linear correlation between perplexity and WER. The WER also depends on the
OOV rate. As a rule of thumb, it can be said that an occurrence of an OOV word is on
average responsible for 1.5 to 2 errors (Geutner et al. 1998).

From results obtained within TC-STAR and from our studies in Stüker et al. (2007)
it can be seen that there is an negative almost linear correlation between the WER and
MT quality.

Although it was shown in Snover et al. (2006) that automatic measures for MT qual-
ity correlate with human judgment, current automatic measures are only to some extent
able to judge semantic differences. This means that errors produced by MT as well as
ASR which affect a few words only, but destroy the semantic meaning of the whole
sentence, are underestimated by all automatically computable performance measures.
Therefore, the end-to-end performance of the simultaneous translation system will be
also judged by humans in Sect. 9.
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Table 1 Summary of the data used for acoustic model training

Type Meetings Speeches Lectures

ICSI NIST EPPS TED SMNR

Duration (hrs) 72 13 80 10 10
Speakers 53 61 1894 52 67
Recordings 75 19 63 39 17

4 A first unadapted baseline system

This section introduces a first unadapted baseline system for SST of lectures and
speeches.

Since lectures and speeches are usually held in rooms with a large audience, micro-
phones used at a small distance from the speaker’s mouth, like head-worn or directional
stand microphones are preferred over far-field microphones which are more sensitive to
background noise. Therefore, the speech recognition systems were developed and opti-
mized with respect to close-talking recording conditions. Since this research evolved in
the context of the European projects CHIL and TC-STAR, European accented English
was of most interest.

4.1 Training, test, and evaluation data

This section describes the data used for training the acoustic, translation and language
models for the ASR and MT systems. Furthermore, it presents the details of the devel-
opment data as well as the evaluation data used to tune the systems and for performing
the following experiments.

4.1.1 Acoustic model training data

As already mentioned, spontaneous close-talking European-accented English is of
most interest. Therefore, for acoustic model training, recordings from meetings, Euro-
pean Parliament speeches, lectures and student seminars were selected.

The most suitable data are the lectures and seminars collected in the CHIL project
(Waibel et al. 2004) (SMNR) and the Translanguage English Database (TED) (Lamel
et al. 1994). Since the amount of data is insufficient to train acoustic models that
perform well in large vocabulary speech recognition tasks such as lecture recogni-
tion, other data has to be used as well. The meeting data consists of recordings of
highly spontaneous meeting speech from mostly native English speakers collected at
two different sites: the International Computer Science Institute (ICSI), Berkeley,
and the US Government’s National Institute of Standards and Technology (NIST). In
contrast, the manually transcribed European Parliamentary plenary sessions (EPPS)
covers nonnative speeches, which are usually prepared in advance and therefore less
spontaneous, i.e. planned speech. An overview of the details of the several training
corpora is given in Table 1.
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Table 2 Summary of the
bilingual training data used
for MT

English Spanish

Sentences 1,162,176
Words 27.7M 28.9M
Vocabulary 93,157 130,473
Singletons 34,543 45,400

4.1.2 Translation model training data

The unadapted translation system was trained on a corpus of sentence-aligned
parallel final text editions from the European Parliament available through its website.
The data was crawled, preprocessed and sentence-aligned automatically by RWTH
Aachen in TC-STAR (Gollan et al. 2005). The corpus statistics of the preprocessed
training corpora are shown in Table 2.

4.1.3 Language model training data

The language models for the baseline speech recognition systems were trained on the
corpora used for the NIST 2006 Rich Transcription evaluation (RT-06S) (Fügen et al.
2006a) and the 2007 TC-STAR evaluation systems (Stüker et al. 2006). Three different
types of data were used: speech transcripts, written text, and text data collected from
the World Wide Web. An overview of the data is given in Table 3. For training the
language models of the MT systems the same bilingual data was used as described
above in Sect. 4.1.2.

4.1.4 Development and evaluation data

For development and evaluation, a total of 19 lectures and talks on different topics by
a single nonnative speaker were collected in different environmental conditions. All
lectures are university lectures related to the field of speech and language processing.
The talks were given for different reasons such as keynotes, press conferences, project
reviews, or just an overview about the work done at our research lab. Table 4 gives an
overview of the data. While lectDev and lectEval were used for system devel-
opment and evaluation, lectOther was used for the adaptation experiments. For
the development of the MT system, two talks out of lectDev were translated into
Spanish, namely t035 and t041, with a duration of 44 minutes and 7,498 words in
English. For the evaluation of the MT and for measuring the end-to-end performance
of the simultaneous translation system, only a subset of lectEval was translated
from English into Spanish. It consists of the two talks t036+ and l043 totalling
92 minutes and 14,908 words.

In addition, some speech recognition experiments were performed on the official
development and evaluation sets of the TC-STAR-07 EPPS evaluation (EPPSdev,
EPPSeval), further referred to as “parliamentary speeches”, and the lecture meet-
ing data track of the NIST RT-06S evaluation (RT-06Sdev, RT-06Seval), further
referred to as “lecture meetings”. Especially the lecture meetings are well suitable as
an additional development set because of their similarity in speaking style and focus
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Table 3 Overview of the available English language model training data

Type ID Words Description and source

Parliamentary EPPS-S 750k Manual transcriptions (Gollan et al. 2005)

Speeches EPPS-T 33M Final text editions (Gollan et al. 2005)

EPPS-U 1.4M Automatic transcriptions (Gollan et al. 2007)

Meetings MTG 1.1M Meeting transcriptions (Burger et al. 2004;

Garofolo et al. 2004; Janin et al. 2004)

AMI 200k Meeting transcriptions from Augmented Multi-party

Interaction (AMI) (Carletta et al. 2005)

Talks, seminars TED 98k Translanguage English Database (Lamel et al. 1994)

SMNR 45k Transcriptions from CHIL (Waibel et al. 2004)

Conversations SWB 4M Transcriptions of from Switchboard

(Godfrey and Holliman 1993)

News texts BN 131M Broadcast news texts (Graff et al. 1997; Fiscus et al. 1998)

UN 42M UN parallel corpus v1.0 (Graff 1994)

HNSRD 48M UK Parliament debates (Roukos et al. 1995)

GWRD 167M Extracts from the Gigaword corpus (Graff 2003)

Proceedings PROC 23M Recent related conference proceedings

Web data UW-M 147M From UWash, related to MTG

UKA-M 124M Related to MTG and PROC

UKA-L 146M Related to SMNR

(Query based UKA-LP 130M Related to SMNR and PROC

filtered) UKA-MP 124M Related to MTG and PROC

Table 4 Development and
evaluation data

Set Talks Duration (min) Words

lectDev 6 243 40,405

lectEval 5 172 24,104

lectOther 8 295 47,751

on a particular topic. However, the level of detail is even higher than the average in
lectDev and lectEval, and many of the recorded speakers have a strong foreign
accent. Compared to the talks and lectures introduced above, both characteristics are
responsible for a more difficult recognition.

4.2 Speech recognition

Interest in research in the domain of the automatic transcription of lectures and
speeches has grown, especially in the last couple of years. To date, several research
groups and projects across the world deal with this topic. Within the EC-financed
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project, CHIL, international evaluations on lecture meetings were carried out in the
context of the 2006 NIST Rich Transcription evaluation (Lamel et al. 2006; Huang
et al. 2006; Fügen et al. 2006a). Besides this, other research has been conducted, for
example on the TED corpus (Lamel et al. 1994; Cettolo et al. 2004). The focus of
the European funded project TC-STAR was the transcription of European Parliament
plenary Sessions (Ramabhadran et al. 2006; Lööf et al. 2006; Stüker et al. 2006; La-
mel et al. 2007). LECTRA (Trancoso et al. 2006) was a national Portuguese project
focusing on the production of multimedia lecture contents for e-learning applications,
which implies taking the recorded audiovisual signal and adding the automatically pro-
duced speech transcription as caption. The goal of the MIT Spoken Lecture Processing
project (Glass et al. 2007) is to improve access to on-line audio/visual recordings of
academic lectures by developing tools for the processing, transcription, indexing, seg-
mentation, summarization, retrieval and browsing of this medium. In the Liberated
Learning Consortium (Bain et al. 2005), instead the goal is to provide real-time, high-
quality automatic speech transcription to aid hearing-impaired students. Research is
conducted not only on improving the recognition quality, but also on the delivery
aspect. Real-time processing is also required in the FAME project (Rogina and Schaaf
2002), where a lecture and presentation tracker is presented. The biggest research effort
on a single spoken lecture corpus has been in Japan using the Corpus of Spontaneous
Japanese, which consists of about 700 hours of speech (Furui 2005).

In this section, a first unadapted baseline speech recognition system for lectures and
speeches is introduced. As a starting point the evaluation systems built for RT-06S and
TC-STAR-07 were used. Typically, the evaluation conditions do not limit the time for
processing the audio data, whereby the speech recognition systems were designed to
achieve an optimal recognition accuracy rather than a short decoding time. This was
also the case in the above-mentioned evaluations, RT-06S and TC-STAR-07, where
the final ASR result was computed by combining the results of different multipass
decoding and adaptation chains using different kinds of acoustic and language mod-
els. In contrast to this, simultaneous translation requires that all components run in
real time with low latency. Thus, a single-pass decoding system which meets these
requirements had to be designed.

From an acoustic model point of view, optimization was done with respect to the
WER on the lecture meeting data track of RT-06S and the parliamentary speeches of
the 2007 TC-STAR evaluation (TC-STAR-07) mentioned in Sect. 4.1.4, in addition
to the lecture development data used in this paper. This was done since lectures and
speeches vary greatly in their spontaneity and we would like to cover both highly spon-
taneous speech as in the lecture meeting data track and less spontaneous speech as in
the parliamentary speeches. In deference to this goal, the language models were tuned
with respect to the specific domain. Furthermore, this development strategy allows
for a direct comparison with other existing evaluation systems within the research
community.

Acoustic model training was done with the help of the Janus Recognition Toolkit
(JRTk) (Finke et al. 1997), which was jointly developed at Carnegie Mellon Univer-
sity, Pittsburgh, PA and Universität Karlsruhe (TH), Germany. For decoding and lattice
generation, the single-pass Ibis decoder (Soltau et al. 2001), developed at Universität
Karlsruhe (TH) and also part of the JRTk, was used. The language models used for
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Table 5 In- and across-domain perplexity and OOV rate comparison on the different development sets

Development set RT-06S TC-STAR-07

OOV Perplexity OOV Perplexity

RT-06Sdev 1.09 148 2.42 283

EPPSdev 1.35 250 0.60 84

lectDev 0.47 160 1.94 255

decoding and lattice rescoring were built using the SRI Language Modeling Toolkit
(Stolcke 2002).

4.2.1 Vocabulary, dictionary, and language model

As expected, the results in Table 5 show that the vocabulary and language model
from the RT-06S evaluation system are more suitable for lecture recognition than the
components from the TC-STAR-07 system. Therefore, the following short description
concentrates on the components of the RT-06S system. More details can be found in
Fügen et al. (2006a).

The dictionary contained 58.7k pronunciation variants over a vocabulary of 51.7k
words. Pronunciations were either derived from already existing dictionaries or auto-
matically generated using Festival (Black and Taylor 1997).8 The language model
used in the RT-06S system is a 4-gram mixture language model, whereas the mixture
weights for each language model were optimized on a held-out set with a size of 30k
words. The language model components were trained on the following corpora: meet-
ing data transcripts (MTG, AMI), transcripts of lectures and seminars (SMNR, TED),
text data (BN, PROC), and several data sets collected from the Web (UW-M, UKA-L,
UKA-LP, UKA-MP). Besides the standard framework for Web text collection pro-
posed in Bulyko et al. (2003), we followed also another approach, where the frequent
n-grams from different lecture or conference meeting transcripts were combined with
topic bigrams from the conference proceedings of PROC to form queries. The topic
phrase generation consisted of: computing bigram tf-idf (term frequency–inverse doc-
ument frequency) weights for each document in the proceedings data, zeroing all but
the top 10%, averaging these weight vectors over the collection, and taking the top
1,400 bigrams excluding any with stop-words or numbers. The topic bigrams were
mixed randomly with the general phrases until the desired number of queries (14k)
were generated.

4.2.2 Acoustic model

Based on the experimental results in Fügen et al. (2006b), it was seen that relatively
good results on all development sets could be achieved when using SMNR, ICSI,
NIST, TED, and EPPS-S data for acoustic model training. The training procedure

8 See also http://www.cstr.ed.ac.uk/projects/festival, accessed 29 October 2008.
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described in Soltau et al. (2004) was extended by applying discriminative training
(Bahl et al. 1986; Normandin 1991) and speaker adaptive training using constrained
maximum likelihood linear regression (MLLR) (Gales 1998). Altogether, the first
unadapted system was trained on nearly 190 hours of speech data, resulting in a fully
continuous acoustic model with approx. 234k Gaussians divided amongst 4,000 con-
text-dependent models in a 42-dimensional feature space. For feature extraction, the
same method as described in Fügen et al. (2006a) was used. A fully continuous acous-
tic model was preferred over a semi-continuous model, because of the better ratio
between speed and accuracy.

4.2.3 Results of the first unadapted system

For the first unadapted baseline system, the multipass decoding strategy used for
RT-06S and TC-STAR-07 was reduced to the first decoding pass only. The final result
can be seen in Fig. 3. For RT-06S and TC-STAR-07, the matching vocabulary and
language model was used, and for the lectures, the components from RT-06S. In all
cases, incremental online adaptation per speaker or lecture as described in Fügen et al.
(2006a) and Stüker et al. (2006) was used. Furthermore, the impact of language model
rescoring on the WER is analyzed, and the mean WER and its standard deviation per
speaker in a lecture meeting, parliamentary speech, or lecture is shown. It can be seen
that while parliamentary speeches and lectures can be recognized with an almost equal
recognition accuracy and speed, the lecture meetings are much more difficult. Since
the lectures were collected from a single speaker only, the variance in terms of WERs
is very low compared to the variance for the parliamentary speeches and lecture meet-
ings, but especially for TC-STAR-07, a significant number of speakers with WERs
lower than those obtained on the lectures exist. It should be noted that for the lectures
the mean WER and its standard deviation was computed across the different lectures
of the same speaker, but for RT-06S and TC-STAR-07, across different speakers and
lecture meetings or parliamentary speeches.

In anticipation of Sect. 8, it should be mentioned that although the Ibis decoder
is a single-pass decoder making extensive use of language model information with
arbitrary context length, already during decoding it can be seen that lattice-based lan-
guage model rescoring consistently lowers the WER. It is advantageous that the RTF
is only marginally influenced by the additional time spent for lattice generation and
rescoring.

4.3 Machine translation

In this section, we discuss the approach for developing the statistical MT (SMT) com-
ponent in our lecture translator that was used to translate lectures and speeches from
English to Spanish. The initial purpose of the underlying phrase-based SMT system
developed within TC-STAR was to translate speeches from EPPS in an offline sce-
nario, that is, translating without constraints with respect to some parameters which
are critical in the simultaneous speech translation scenario, such as processing time,
resource usage, and latency. Parliamentary speeches, while covering a relatively broad
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Fig. 3 Comparison of WERs on the different development and evaluation sets before and after language
model rescoring in combination with the RTFs computed with language model rescoring. Furthermore,
the lines within the WER boxes mark the mean WER and its standard deviation per speaker in a lecture
meeting, parliamentary speech, or lecture

discourse domain, are usually prepared speeches given by well-trained speakers. Lec-
tures, on the other hand, can go into much more detail on any given topic, and, as
an aggregate, cover a practically unlimited domain; a system suitable for translating
general lectures must be able to cope with much more variable and more spontaneous
speaking styles. At the same time, the MT component should make use of the addi-
tional information about the topic, which is known in advance in the typical lecture
translation scenario, and offer acceptable speed and latency in real-time operation.
We therefore needed to develop a system considerably different from the one built
and optimized for traditional batch mode operation and well-controlled speech. In
our experiments, we used loose coupling, passing the single-best hypothesis from the
recognizer to the translation component. Translation quality was measured using the
well-known evaluation metrics Bleu (Papineni et al. 2002) and NIST (Doddington
2002). MT scores were calculated using case-insensitive scoring and one reference
translation per test set.

4.3.1 Word and phrase alignment

Phrase-to-phrase translations are critical for the performance of state-of-the-art SMT
systems, and our lecture translation system builds upon this foundation. For the initial
version of the MT component, we chose an approach to phrase alignment and extrac-
tion which is well suited for efficiently providing phrase translation alternatives on
the fly (Vogel 2005). This method, based on optimizing a constrained word-to-word
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alignment for an entire sentence pair, can be used to extract phrase translation can-
didates of arbitrary length from the training corpus at decoding time (Kolss et al.
2006). To find a translation for a source phrase, the precomputed word alignment is
restricted: words inside the source phrase align to words inside the target phrase, and
words outside the source phrase align outside the target phrase. This constrained align-
ment probability is calculated using the well-known IBM Model-1 word alignment
model (Brown et al. 1994), but the summation of the target words is restricted to the
appropriate regions in the target sentence. The position alignment probabilities are
adjusted accordingly.

For the experiments reported in this paper, we used a classic phrase table constructed
by training IBM Model-4 word alignments in both directions and extracting phrase-
to-phrase translation pairs which are consistent with these word alignments, as this
significantly improved translation quality. The GIZA++ toolkit (Och and Ney 2003)
and the implementation of the “grow-(diag)-final” heuristic (Koehn et al. 2005) were
used for training word and phrase alignments, respectively. In addition, we applied
modified Kneser-Ney discounting to the raw relative frequency estimates of the phrases
as described by (Foster et al. 2006). Finally, the phrase table was pruned to the top ten
phrase translations for each source phrase using the combined translation model score
as determined by Minimum Error Rate (Och 2003) optimization on a development set.

4.3.2 Decoder

The beam search decoder combines all model scores to find the best translation. In
these experiments, the different models used were:

1. The translation model, i.e. the word-to-word and phrase-to-phrase translations
extracted from the bilingual corpus as described in the previous section.

2. A 4-gram language model trained with the SRI language model toolkit (Stolcke
2002).

3. A word reordering model, which assigns higher costs to longer-distance reorder-
ing. We use the jump probabilities p( j | j ′, J ) of the HMM word alignment model
(Vogel et al. 1996) where j is the current position in the source sentence and j ′ is
the previous position.

4. Simple word- and phrase-count models. The former is essentially used to compen-
sate for the tendency of the language model to prefer shorter translations, while
the latter can be used to give preference to longer phrases.

For each model a scaling factor can be used to modify the contribution of this model
to the overall score.

The decoding process is organized into two stages: first, the word-to-word and
phrase-to-phrase translations and, if available, other specific information like named-
entity translation tables are inserted into a translation lattice. In the second step, we find
the best combinations of these partial translations, such that every word in the source
sentence is covered exactly once. This amounts to doing a best-path search through
the translation lattice, which is extended to allow for word reordering: decoding pro-
ceeds essentially along the source sentence. At each step, however, the next word or
phrase to be translated may be selected from all words lying or phrases starting within
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Table 6 MT results on text as
well as on ASR input

NIST Bleu

t036+, text input 5.72 23.4

t036+, ASR input 5.06 17.9

l043, text input 5.27 19.6

l043, ASR input 4.80 16.6

a given look-ahead window from the current position (Vogel 2003). The usage of a
local reordering window in the lecture translation system captures most of the bene-
fits of improved target word order while keeping search complexity low for real-time
operation.

4.3.3 A first unadapted system

For training the baseline translation system, the parallel EPPS corpus as described
in Sect. 4.1.2 was used. Although the speech recognition is unable to deliver punc-
tuation marks with its hypotheses, they were left in the corpus but separated from
the words. The reason for this is that they help in finding useful split points for the
phrase alignment training. Misalignments in the corpus and other “noise” like docu-
ment references were discarded. Furthermore, abbreviations were expanded and dates
and number expressions spelled out. In conformity with the speech recognition all
data was lower cased.

All punctuation marks were later removed from the source side of the phrase align-
ments to keep the interface between ASR and MT as simple as possible. As later
explained in Sect. 6 developing an additional punctuation annotation module with a
reasonable performance is quite challenging, and according to Matusov et al. (2006)
the performance of the SMT is affected only slightly.

For training the initial language model, the target, i.e. Spanish, side of the same
corpus was used. Modified Kneser-Ney discounting and interpolation of discounted
n-gram probability estimates was applied. This results in a trigram language model
covering 131k words and having a perplexity on the Spanish side of lectDev of 631.

Table 6 summarizes the translation results of the first baseline system on the devel-
opment and evaluation data for the lectures and TC-STAR-07. As expected, the perfor-
mance on ASR results is worse compared to that on manually transcripts. It should be
noted that from results obtained within TC-STAR and from studies done by ourselves
in Stüker et al. (2007) it can be seen that there is an negative almost linear correlation
between the WER and the MT quality.

5 Adaptation

It is a known fact that adaptation increases a system’s performance, and lectures and
speeches are particularly suited for adaptation because (a) a speaker is talking more
or less continuously for a longer time, (b) the identity of the speaker who gives the
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lecture is known in advance, and (c) the topic of the lecture is known in advance as
well. This makes it possible to perform adaptation on different levels or with respect
to different models of a simultaneous translation system:

Acoustic model: Acoustic model adaptation can be used to adapt to a speaker’s
voice or to compensate for variations in the audio signal, like ambient noise.
Source-language model: Language model adaptation can be used to adapt a lan-
guage model to a specific talk or lecture, but also to the speaker’s speaking style,
which can differ in the degree of spontaneity as well as in the selection of phrasing.
Translation model: Translation model adaptation can improve the translation qual-
ity in all situations where the training data does not match the new conditions and
is therefore used mainly for topic adaptation especially when new, unseen phrases
or words have to be translated.
Target-language model: The target-language model is used by the MT system and
can be adapted for the same reasons and in the same way as the source-language
model.

In general, adaptation techniques fall into two categories: normalization of the input
to match the model to which the system was trained to, and model adaptation tech-
niques in which the parameters of the model itself are adjusted to match the input
better. A further distinction can be made between supervised adaptation, where the
adaptation parameters are estimated with respect to the reference transcriptions, and
unsupervised adaptation, where hypotheses are used instead. Some of the techniques
can be used during acoustic model training only (offline adaptation), others also during
decoding for incremental adaptation (online adaptation).

Adaptation is not special to automatic systems only; human interpreters do that
as well. Especially for simultaneous interpretation human interpreters interview the
speaker and carry out some literature research in advance in order to make themselves
familiar with the topic. In this way, the translation of special phrases can be memorized
in order to allow for a more fluent interpretation.

5.1 Speaker and topic adaptation for ASR

5.1.1 Speaker and channel adaptation

Because of their simplicity, cepstral mean and variance normalization (Atal 1974;
Furui 1986), vocal tract length normalization (VTLN) (Eide and Gish 1996; Zhan and
Westphal 1997) and constrained MLLR (cMLLR) (Gales 1998) are particularly suited
for online speaker and channel adaptation. Compared to no adaptation at all, achieving
a WER of 16.1% on lectDev and 19.8% on lectEval using incremental VTLN
and cMLLR in addition decreases the WER to 14.1% on lectDev and even 15.5%
on lectEval.

An insight into the behavior and improvements of online adaptation, given in Fig. 4,
shows the WERs obtained for some selected talks that are plotted over the number of
utterances decoded so far. It can be seen that the WER is continuously going down
over time.
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Fig. 4 Improvements of incremental adaptation with respect to the number of utterances available for
parameter estimation

Figure 5, in contrast, shows the results for supervised and unsupervised MLLR
offline adaptation (Leggetter and Woodland 1995). It can be seen that the WERs are
decreasing with an increasing amount of adaptation data, whereas the difference in
WER between supervised and unsupervised adaptation is getting larger with increas-
ing availability of adaptation data. Furthermore, the additional gain due to incremental
online adaptation using the precomputed offline adaptation parameters as a starting
point can be seen as well. At a reasonable amount of adaptation data of 15 min-
utes which usually corresponds to an average talking time of a single talk, a rela-
tive improvement in WER on lectDev of almost 5.7% after supervised and 2.1%
after unsupervised adaptation could be achieved. When using the full set, the rela-
tive improvement increases to 12.8% after supervised and 10% after unsupervised
adaptation. In another experiment, it was determined whether the difference in WER
between supervised and unsupervised adaptation can be preserved when the adapta-
tion parameters and acoustic models are seeded with that of the supervised adapted
system. Starting from a supervised adapted system using 15 minutes of speech data,
unsupervised adaptation was performed. Unfortunately, the difference in WER could
not be preserved, as can be seen from the “mixed” curve in Fig. 5. Another interest-
ing observation from the experiments is that when using no online adaptation during
decoding, a system adapted with a small amount of adaptation data actually performs
worse as compared to an unadapted system using online adaptation. In the other case,
i.e. with online adaptation during decoding, even a small amount of adaptation data
leads to an improvement in WER of the adapted system.

5.1.2 Topic adaptation

In the RT-06S evaluation system, topic adaptation was already performed by collecting
Web data related to scientific lectures as well as using proceeding data in addition.
A mixture model approach was used to incorporate that data into the final language
model by training single language model components on each of the training corpora
and interpolating them together into a single language model. Hence, the interpola-
tion weights for the different language model components are computed iteratively
using the EM algorithm by minimizing the perplexity on a held-out set (de Mori and
Federico 1999; Bellegarda 2004).
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Fig. 5 Comparison of supervised and unsupervised MLLR offline adaptation with respect to the amount
of available data. For the curves marked “incremental”, online adaptation was performed during decoding,
while for the curves marked “fixed” the precomputed offline adaptation parameters were used instead and
no online adaptation was performed. For the “mixed” curve the unsupervised adaptation was seeded with
a supervised adapted system

Figure 6 shows the interpolation weights for different language models and gives
an impression of the relevance of the different corpora for specific domains. The col-
umns RT-06S and TC-STAR-07 show the weights for the language models used
in the respective evaluations. In contrast to TC-STAR-07, where the weights were
optimized on the development set itself (EPPSdev06), the weights for RT-06Swere
optimized on a separate held-out set. Therefore, the next column RT-06Sdev shows
the interpolation weights optimized onRT-06Sdev instead. The most obvious change
is the increased weight of the meeting component (MTG) together with the decreased
weight of the seminar component (SMNR). This clearly shows the difference between
the held-out set containing lectures only and the development set containing more
interactive lecture meetings.

In the last three columns marked with -all, the interpolation weights were opti-
mized using all available data and not restricted to the subset available at the time of
evaluation or allowed by the evaluation conditions. It should be noted that for reasons
of clarity only the interpolation weights of the language model components which
contribute more than 3% to the mixed language model are shown. It can be seen that
for RT-06S, in addition to the components used so far, the EPPS-S and UKA-L
components were used. For TC-STAR-07, only the UKA-L Web data component
was added. Due to the lack of matching in domain data, it can be seen that for lec-
tures, (lectDev-all) more corpora are used than compared to the other domains
and that the most relevant corpora were UKA-MP, PROC, EPPS-S, and MTG. When
adding transcribed in-domain lecture data (lectOther) from the same speaker this
completely changes as can be seen in the last column lectDev-lect. The weight
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Fig. 6 Interpolation weights for different mixture language models optimized on different development
sets. For each language model component, the corpus used for training is given in the legend and was
described in Sect. 4.1.3. RT-06S and TC-STAR-07 are the weights of the original language models used
in the evaluation system; for the other columns the weights were recomputed using the additional corpora
as well

Table 7 In- and across-domain
perplexity comparison of
language models tuned on
different development sets

Language model RT-06Sdev EPPSdev lectDev

RT-06S 153 276 163

TC-STAR-07 283 84 255

RT-06Sdev 148 250 160

RT-06Sdev.all 134 150 148

EPPSdev.all 227 81 209

lectDev.all 140 147 151

lectDev.lect 136 208 117

of the lecture data is almost 50% and shows the clear match in topic and speaking
style.

In Table 7, the perplexities for the different language models on the different sets
are summarized. It can be seen that due to tuning of the language model weights, the
perplexity can be decreased from 163 to 151 on lectDev and by adding in-domain
lecture data further down to 117.
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Table 8 Comparison of the
OOV rates (%) of the original
RT-06S vocabulary used in the
baseline system and the
expanded vocabulary on the
lecture data

RT-06S Expanded

lectDev 0.47 0.14

lectOther 0.46 0.15

lectEval 0.74 0.49

Table 9 Comparison of the
final recognition results
(percentage WERs) after
language model rescoring using
the techniques described above
on lectDev and lectEval

lectDev lectEval

No adaptation 16.4 19.9

Acoustic model online adaptation 14.3 15.7

+ Offline adaptation 12.7 14.0

+ Language model adaptation 12.0 13.4

+ Vocabulary expansion 11.2 12.6

5.1.3 Vocabulary expansion

In Table 8, it can be observed that the OOV rate with the RT-06S vocabulary used in
the baseline system is pretty low already. Nevertheless, it is still worth decreasing the
OOV rate by expanding the vocabulary even more, as will be seen later. Therefore, all
nonsingleton OOV words in lectDev and lectOther are added to the vocabulary
resulting in a decrease of the OOV rate on lectEval to 0.49%.

5.1.4 Recognition results

Table 9 summarizes and compares the final recognition results using the techniques
described above. The baseline is formed by using a speaker-independently trained
acoustic model and no adaptation at all. With online adaptation using VTLN and
cMLLR during decoding with the same acoustic model, the WER is reduced sig-
nificantly by 21.1% on lectEval and 12.8% on lectDev. By using supervised
speaker-adapted acoustic models instead the WER drops by about 11% on both sets.
Using an adapted language model computed with an expanded vocabulary further
decreases the WER by about 10–12% to a final WER of 11.2% on lectDev and
12.6% on lectEval.

5.2 Topic adaptation for MT

Adaptation of the MT component of our EPPS translation system towards the more
conversational style of lectures and known topics was accomplished by a higher
weighting of the available lecture data in two different ways. First, for computing
the translation models, the small lecture corpora were multiplied several times and
added to the original EPPS training data. This yielded a small increase in MT scores
(see Table 11).
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Table 10 Comparison of the
perplexities for differently
adapted target-language models

lectDev lectEval Weight (%)

EPPS-T 631 1019 0.9

WEB01, common speech Web data 342 554 6.7

WEB02, topic related Web data 217 544 57.2

Lectures 711 35.1

Interpolated 348

Table 11 Translation model and language model adaptation

Unadapted Target model + Language model

NIST Bleu NIST Bleu NIST Bleu

t036+, text input 5.72 23.4 5.89 25.0 6.33 28.4
t036+, ASR input 5.06 17.9 5.15 18.9 5.60 23.0
l043, text input 5.27 19.6 5.35 20.3 5.48 21.6
l043, ASR input 4.80 16.6 4.85 16.9 5.05 19.0

Second, for (target) language model adaptation, Web data was collected in the same
manner as described for the RT-06SASR evaluation system. As can be seen in Table
10 the baseline EPPS-T language model based on EPPS text data has a very high
perplexity. Therefore, two different Web data collections were performed. To adapt
the language model to the more conversational style of lectures, common spontaneous
speech expressions were extracted from some speech transcripts and used as queries.
The resulting corpus WEB01 had a size of about 90M words. A second collection
was performed by using topic related n-grams as queries, whereby the n-grams were
extracted from the development data. This results in a corpus WEB02 of about 45M
words. As can be seen from Table 10, both corpora got significantly lower perplexities
than compared to EPPS-T. The reason for the lower perplexity for WEB02 on lect-
Dev is due to the queries which were extracted from the same data. While WEB02
was taken as it is, WEB01 was in addition filtered using a perplexity-based criterion
on a document level. The lecture (lectDev) data itself achieved a perplexity of 711
on lectEval. From the interpolation weights given in Table 10, which were tuned
on some other held-out data, it can be observed that the relevance of the WEB02 data
is much higher than the WEB01 data. This might be due to some overlap between both
corpora together with the fact that the second corpus is much more specific due to the
topic n-grams. Overall a perplexity of 348 on the evaluation data is achieved.

The effects of translation model and language model adaptation, as well as the
results of the final system, combining both adaptation steps, are shown in Table 11
for English–Spanish. In absolute terms, the translation performance on this difficult
task is still quite poor when compared with tasks for which large amounts of train-
ing data similar in style is available, such as the TC-STAR EPPS task. Nevertheless,
small amounts of lecture data were sufficient to improve performance significantly,
especially when amplified by using language model adaptation with similar Web data.
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6 Translatable speech segments

In speech translation systems the combination of ASR and MT is not always straight-
forward for optimal performance. In addition to the errors committed by the speech
recognition leading to additional errors in the MT, the ASR hypotheses have to be
resegmented such that the performance of the MT does not suffer because of them.
Since almost all SMT systems are trained on data split at sentence boundaries this is
commonly done by resegmenting the hypotheses according to automatically detected
sentence boundaries.

Punctuation annotation is usually done by combining lexical and prosodic features
(Liu 2004), whereas the combination is often done with the help of maximum entropy
models (Huang and Zweig 2002) or CART-style decision trees (Kim and Woodland
2001).

For simultaneous translation systems, chunking of ASR hypotheses into useful
translatable segments is even more critical and difficult (Fügen et al. 2006b). Due
to the resulting latency, a global optimization over several ASR hypotheses as sug-
gested in Matusov et al. (2006) is impossible. Instead a latency as short as possible, as
explained in Sect. 2.2.1 is desirable. For English, as will be seen later, relatively good
results were achieved with a latency of about three seconds corresponding to about 12
words at an average speaking rate.

This section presents and extends the work which the authors have published in
Fügen and Kolss (2007). The work based on the experiments done by Cettolo and
Federico (2006) in which the impact on translation performance of different text seg-
mentation criteria was investigated. We address the questions on how chunking of ASR
hypotheses as well as ASR reference transcripts into translatable segments, usually
smaller then sentences, influence MT performance in an empirical study. Therefore,
we compare different segmentation strategies on ASR hypotheses as well as on the
reference transcripts. To measure the usefulness for simultaneous translation, we set
the MT performance in relation to the average segment length and its standard devi-
ation.

Simultaneously with Fügen and Kolss (2007), another work was published by Rao
et al. (2007). This work aimed to improve the translation performance by optimizing
the translation segment length only, instead of reducing the segment length to decrease
translation system latency. The interesting result of this work is that the best perfor-
mance is achieved with segments smaller than sentences, similar to the observations
described here.

In Fig. 7 the output of the ASR system is a continuous stream of words and noises,
and, based on this information, a segmentation algorithm has to find appropriate bound-
aries. Repetitions and other ungrammaticalities of spontaneous speech makes this a
difficult task. The result of the best performing algorithm is shown as well, and, as
can be seen, it is not perfect.

Section 6.1 presents the test data and systems used for these experiments, which
differ from those introduced in Sect. 4, only in the translation direction. The reason for
this was practical: at the time these studies were made, the Spanish–English translation
system achieved the best translation performance.
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Fig. 7 Example of an unsegmented output of the ASR system and the segmented output using the best
performing algorithm. Segment boundaries are marked with periods. Recognized human and nonhuman
noises are written in brackets

6.1 Data and systems

At the time of the experiments only a Spanish–English translation system was available
(Kolss et al. 2006), which was trained using minimum error rate training (Och 2003)
on the same parallel EPPS data as that mentioned in Sect. 4.3, but with the translation
direction from Spanish to English. It is later shown in Sect. 7 that the results obtained
are also transferable to the other translation direction. For decoding, a word reordering
window size of four was used in our experiments.

As test data, we selected the 2006 Spanish–English TC-STAR development data
consisting of three hours (14 sessions) of nonnative Spanish speech recorded at the
European Parliament. We used ASR hypotheses as well as reference transcripts for the
experiments, whereas the Spanish hypotheses were generated with a system trained
within TC-STAR on Parliament plenary sessions (Stüker et al. 2007; Paulik and Waibel
2008). The case-insensitive WER was 8.4%.

6.2 Experimental results and discussion

6.2.1 Scoring MT with different segmentations

The commonly used metrics for the automatic evaluation of MT output, such as the
Bleu (Papineni et al. 2002) and NIST (Doddington 2002) metrics, were originally
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developed for translation of written text, where the input segment boundaries cor-
respond to the reference sentence boundaries. This is not the case for translation of
spoken language where the correct segmentation into sentence-like units is unknown
and must be produced automatically by the system.

In order to be able to use the established evaluation measures, the translation output
of the automatically produced segments must be mapped to the reference translation
segments in advance of the scoring procedure. This is done by using the method
described in Matusov et al. (2005), which takes advantage of the edit distance algo-
rithm to produce an optimal resegmentation of the hypotheses for scoring which is
invariant to the segmentation used by the translation component.

The Bleu scores for the end-to-end evaluation were obtained by using this method
using two reference translations. Since the alignment was performed on a per-session
level the result is invariant in relation to the number of segments produced for a single
session. The scoring was done case-insensitively without taking punctuation marks
into account.

6.2.2 Baselines

Resegmenting ASR hypotheses at sentence boundaries for MT is the most common
approach for speech translation systems. For this reason, the translation scores obtained
by translating ASR hypotheses as well as reference transcripts split at sentence bound-
aries (sent) serve as one baseline for the following experiments. As can be seen in
Table 12, we obtained a Bleu score of 36.6% by translating ASR reference transcripts
and a score of 33.4% for ASR hypotheses, which clearly shows the influence of the
ASR performance on MT quality. The average segment length was 30 words with a
standard deviation of 22.

Another baseline is obtained by taking all punctuation marks as split points
(punct). By doing this, the average segment length could be reduced to an acceptable
nine words with almost no decrease in the translation score. The reason for this is that
punctuation marks are usually used to represent semantic boundaries.

6.2.3 Destroying the semantic context

In this section, we analyzed how MT performance is affected by destroying the seman-
tic context of an utterance independently of the applicability for simultaneous trans-
lation. Following the experiments in Cettolo and Federico (2006) we simply cut the
merged utterances of a single session every n word (fixed). The results are given in
Table 12 for n ∈ {7, 11, 15} and provide a lower bound for the chunking strategies that
will be presented below. As expected, the decrease in segment size, i.e. the destruction
of the semantic context, affected the translation scores significantly.

6.2.4 Using acoustic features

Following the finding of Chen (1999), that pauses closely correspond to punctua-
tion, we used the information about nonspeech regions in the ASR hypotheses for
resegmentation. For nonspeech regions, we used recognized silences and nonhuman
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Table 12 Bleu scores obtained on ASR reference transcripts (Ref) as well as on ASR hypotheses (ASR)
together with the average (avg) segment length and standard deviation (sd)

Chunking strategy Segment length Correlation Bleu

avg sd Precision Recall Ref ASR

Baseline

sent 30.1 22.1 98.5 26.5 36.59 33.41

punct 9.2 6.7 100.0 98.6 35.91 33.31

Length based

fixed-7 7.0 0.2 22.8 26.5 30.13 27.50

fixed-11 11.0 0.7 22.6 16.8 32.07 29.53

fixed-15 15.0 0.6 23.8 13.0 33.64 30.66

sent-0.5 15.3 11.3 59.0 31.8 35.08

sent-0.25 10.3 8.5 44.9 36.1 33.67

Using acoustic features

pause-0.1 8.2 5.7 59.3 58.3 31.86

pause-0.2 12.1 11.0 66.3 44.5 32.53

pause-0.3 17.0 19.6 71.5 34.0 32.62

pause-var15 7.5 3.1 59.4 61.4 31.34

pause-var20 9.8 4.3 64.6 53.0 31.87

pause-var25 11.8 5.3 68.3 46.9 32.36

asr 13.4 9.0 70.1 42.6 32.68

Using also other features

lm 10.9 9.8 73.1 54.1 32.90

lm-10 8.7 5.6 67.3 62.4 32.36

Precision and recall of segmentation boundaries to punctuation marks are given as well

noises, whereas successive noises and silences were merged together. For the trans-
lation scores (pause) in Table 12 we used different nonspeech duration thresholds
(0.1, 0.2, and 0.3 seconds). As expected, the results are significantly better than those
obtained with the chunking strategies in Sect. 6.2.3.

The standard deviations of the segment lengths achieved with the nonspeech chunk-
ing strategies are still too large for use in simultaneous translation. By splitting the
ASR hypotheses at the longest nonspeech interval within a region of a maximum
number of words (var15, var20, var25, with chunks of maximally 15, 20, 25
words), the standard deviation could be significantly reduced without decreasing the
translation quality when comparing fixed and variable nonspeech chunking strategies
having a similar average segment length.

Overall, chunking strategies using nonspeech regions are simple and require no
additional context information, but nonetheless, achieving relatively good transla-
tion scores. While precision and recall show a good correlation between nonspeech
regions and punctuation marks, only a slight correlation between precision and Bleu
score could be observed. This let us come to the conclusion that an optimal chunking
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Fig. 8 Results obtained by chunking ASR hypotheses sorted descending according to their average seg-
ment length. Bleu scores (left axis) are represented by boxes, while the markers in the middle of the boxes
give the average segment length (right axis) together with the standard deviation

strategy for MT does not necessarily have to have a high correlation with punctuation
marks. Instead, additional features have to be considered as well.

6.2.5 Using other features

In Cettolo and Falavigna (1998), prosodic as well as lexical information (punctua-
tion marks, filled pauses and human noises) was used to detect semantic boundaries
automatically. According to Cettolo and Falavigna, a trigram language model was
trained, whereas all punctuation marks in the training corpus were substituted by a
boundary tag BD. But instead of doing a global optimization over the whole sentence,
the decision was made using local information only, i.e. (a) by setting the language
model probabilities Pr(wi−1, wi ,BD, wi+1, wi+2) and Pr(wi−1, wi , wi+1, wi+2) in
relation to each other and (b) by using additional thresholds for the nonspeech gap
in between wi and wi+1. As can be seen in Table 12, (lm) this chunking strategy
outperforms all other strategies using acoustic features only. A precision of 73% and a
recall of 54% was measured. Nevertheless a standard deviation of 10 from the average
of 11 words was measured. Therefore, in a second experiment we relaxed the above-
mentioned thresholds when no split point was found after ten words (lm-10). By
doing this, the standard deviation could be almost halved with only a minor decrease
in Bleu score.

Overall, it can be seen in Fig. 8 that sentence boundaries are a good criterion for
utterance chunking, but are inapplicable for simultaneous translation because of the
high average sentence length. Chunking strategies based on nonspeech regions are
simple and require no additional context information, but nonetheless achieve rel-
atively good translation scores. Nevertheless, a more sophisticated approach using
lexical features provided by a language model in addition outperforms all chunking
strategies using acoustic features only.

Overall, the chunking strategy lm-10 outperforms the manual sentence-based seg-
mentation and performs almost identically to the manual segmentation using
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Fig. 9 Configuration of the lecture translation system. Ceiling-mounted targeted audios and heads-up
display goggles are used to deliver translations to individual people in the audience only

punctuation marks punct. Furthermore, it has the desired average segment length
of nine and a small standard deviation of six and is therefore well suited for simulta-
neous translation systems.

7 A system for simultaneous speech translation

Given the description of the single components of the simultaneous translation system
in the previous section, the configuration of the lecture translation system, shown in
Fig. 9, is explained in more detail. Furthermore, some latency and real-time issues are
discussed.

7.1 System overview

Figure 2 already showed the schematic overview of the architecture of the simulta-
neous translation system and its information flow. All components of the simultaneous
translation system are connected together in a client-server framework, similar to the
one described in Fügen et al. (2001). It is designed in a way where several consum-
ers can be used to process the output of a single or multiple producers to reduce the
latency of the system, if necessary. If required, the architecture also allows for combin-
ing for example the hypotheses of several ASR components on the same input signal
to improve the recognition quality by easily adding another consumer responsible for
the combination. The only requirement in this case is that the latency of the system be
not affected.

When offering simultaneous translation services there is always the question on
how to deliver the translation to an audience. In the case of human interpreters the
translation is delivered in spoken form for which headphones are typically used. An
automatic system has the advantage that the translation can be delivered as well in
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written form. In the following, the advantages and disadvantages of the different trans-
mission forms, types, and output devices are discussed in more detail.

In written form: One of the most prominent transmission types is presenting the
translation as subtitles on a projection screen. The advantages of this transmission
type are that it is easy to implement, does not require any additional hardware and
can be presented to several people at the same time. However, with the necessity
to display an increasing number of output languages at the same time, clarity of
the presentation also suffers. In contrast to this, with display devices assigned
to a single person or a small group of persons of the same mother tongue, it
is possible to deliver the required target-oriented translation language only, but
then it is necessary to purchase additional hardware. The additional costs could
be reduced significantly by also supporting standard handheld devices like PDAs
or cellphones, which are becoming nowadays more widely used. All above-men-
tioned output devices have the major disadvantage that for reading the translation,
one is unable to look at the lecturer or presentation slides at the same time. For
this reason, heads-up display goggles (see Fig. 10a) might be an ideal solution,
because they enable the wearer to see both the lecturer and translation at the same
time. However, it is very expensive to equip an audience with such a device.
In spoken form: The other most prominent transmission form is delivering the
translation with the help of a speech synthesis in spoken form. Using standard loud-
speakers for this is only suitable when the whole audience has the same mother
tongue. Otherwise, the different spoken translations and original speech would
interfere with each other. Using headphones solves this problem, but requires
additional equipment for the audience. Furthermore, it hinders the audience from
communicating with each other, because it becomes difficult to speak with a neigh-
bor without taking off the headphones. For this reason another solution came to
mind: beam steered sound beams or “target audio devices”, which allow delivery
of the translation to a desired group of people located in the beam using a single
device only, without disturbing other people in the audience located outside of
the beam. With this solution, communication between people in the audience is
not hindered and the audience is not forced to wear additional personal devices.
Furthermore, due to the fact that several people can be addressed with a single
device, the additional cost can also be reduced. Figure 10b shows such a targeted
audio device: a parametric array consisting of several ultrasound loudspeakers,
which was proposed by Olszewski et al. (2005).

Although several problems could be solved with the help of these devices, one
problem still exists, which we call the “delivery rate problem”. To keep the latency
of the system constant, the system has to consume input as fast as it is produced and
therefore has to deliver output at the same rate. This is especially problematic for lan-
guage pairs for which an expression with the same meaning consists of more words
in the target language than in the source language, like for example with English and
Finnish. Furthermore, the automatic system is not perfect, which means that under-
standing an imperfect written or spoken translation is not an easy task, but increasing
the delivery rate of the translation to keep up with the lecturer will make this task even
more difficult.
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Fig. 10 Different output devices: a Translation goggles. b The targeted audio device

8 Latency and real-time issues

Besides the latency, which is caused by the serialization of the components of the
simultaneous translation system, i.e. ASR, resegmentation and MT, the RTF of the
components themselves for processing a given input plays an important role, in which
the influence of the speech recognition is the largest.

The most common strategy for reducing the latency in a speech recognition system
is to start with the decoding as soon as enough recorded data is available, i.e. without
waiting until the recording has finished. The most prominent example for this strategy,
called “run-on decoding”, is a commercial dictation system. Typically, voice activity
detection (VAD) is used in advance of decoding to prevent the speech recognition from
decoding huge amounts of silence or background noise, which often cause recogni-
tion errors. However, for lectures there is typically no speaker change and also a more
or less continuous stream of speech, so that VAD is less important. Furthermore, an
additional latency is introduced by VAD, because several consecutive frames normally
have to be classified as speech to start a new segment and because of the algorithm
itself. Therefore, a relatively simple, energy-based VAD is used, which is responsible
for a rough speech/nonspeech classification only.

To decrease the latency further, the speech recognizer was modified to deliver
partial, single-best hypotheses even during the decoding of a segment. Our implemen-
tation returns only those hypotheses which, independent of the search-tree pruning,
will not change in the future. Each partial hypothesis is directly passed to the reseg-
mentation component. The disadvantage of this strategy with our Ibis decoder is that
an additional language model rescoring pass is no longer possible.

As can be seen in Table 13, while a smaller interval length produces a smaller
latency, the RTF increases slightly due to the overhead for processing more segments.
Latencies achieved for the systems using a 1-second interval are significantly lower
than those obtained with a 2-second interval if the total RTF is lower than 1. When
applying incremental adaptation, it can be seen that the RTF increases due to the over-
head for computing the adaptation parameters, but the latency is reduced, because the
better adapted acoustic models are leading to a smaller search space and a faster decod-
ing speed. In the case of the system with incremental adaptation using a 1-second inter-
val, it can be seen what happens if the total RTF is higher than 1.0. The system cannot
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Table 13 Comparison of the WER, latency in seconds, RTF of the decoding itself and the total RTF for
different audio interval durations (in seconds) on LectDev

Interval WER (%) Latency RTF

Baseline 16.9 1.10

0.5 17.3 3.48 1.05

1.0 16.7 3.60 0.98

2.0 16.6 5.10 0.96

3.0 16.4 6.83 0.95

5.0 16.6 10.36 0.93

Baseline adapted 15.1 1.20

+ Gaussian selection 15.4 0.70

1.0 Adapted 15.3 6.33 1.18

+ Gaussian selection 15.5 2.16 0.88

2.0 Adapted 15.3 5.80 1.08

+ Gaussian selection 15.2 3.61 0.78

keep up with the speaking rate of the input speech leading to high latency. In such
cases, applying additional speed-up techniques such as Gaussian selection is essential.

As mentioned above, no lattice rescoring was used in all cases. The respective
WERs for the two baselines with lattice rescoring can be found in Table 9: an absolute
difference of 0.5–0.8 can be observed. Figure 11 shows an example of the output of the
ASR system before and after language model rescoring. As can be seen, due to a higher
weighting of the language model scores compared to the acoustic model scores, the
influence of the language model is increased which results a more accurate hypothesis.

For translation, a reordering window of four words was used, resulting in a transla-
tion speed of about 50 words per second. That means that the translation of a segment
with an average length of ten words does not take longer than speaking a single word.

To reach the above-mentioned real-time and latency restrictions, the simultaneous
translation system has to run on a multiprocessor workstation. If it is required to run
the system on a laptop, the processing speed of the components has to be increased
even more. For the speech recognizer this can be done by reducing the search space
pruning thresholds or by applying Gaussian selection (Fritsch and Rogina 1996). For
MT, the reordering window can be reduced to a size of two.

9 End-to-end evaluation results

The evaluation of the final end-to-end system for the English–Spanish direction was
carried out on six excerpts, three each from the two talkst036+ andl043 as described
in Sect. 4.1.4. The excerpts focus on a different topic each and represent a total of
about 36 minutes and 7,200 words. The WER of the ASR component on this subset
was 11.9% with an OOV rate of 0.5%. For computing the MT scores, the two available
reference translations were automatically resegmented using the approach described
in Matusov et al. (2005). Table 14 shows the automatic evaluation results of the trans-
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Fig. 11 Example of an unsegmented output of the ASR system before and after lattice rescoring. Capitalized
words are substitution or insertion errors and stars are deletion errors

Table 14 ASR and SMT
automatic evaluation results

ASR SMT Bleu SMT NIST
WER (%)

EPPS (TC-STAR 2007) 6.9 40.60 9.19
Lectures (our system) 11.9 28.94 7.07

lated output for the simultaneous translation system on Lectures and compares
them with the results of the final TC-STAR 2007 evaluation system for parliamentary
speeches EPPS (see Hamon et al. 2007).

9.1 Methodology

The human evaluation was carried out using the same methodology as used in the
TC-STAR project (Hamon et al. 2007). A professional human interpreter was asked to
translate the same six excerpts, and the outputs of the automatic system and the human
interpreter were then presented to human judges. Of the 20 judges, all native Spanish
speakers, half of them did not have specific knowledge of the technical domain of
the lectures and no specific experience, while the other judges had knowledge of the
domain. Each judge evaluated either the automatic excerpts or the human excerpts,
and each segment was thus evaluated by 10 different judges.
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9.1.1 Evaluation protocol

Excerpts were presented to the judges via an online interface. For each excerpt, judges
were instructed to:

– listen to the current excerpt only once;
– answer a comprehension questionnaire;
– evaluate the fluency;
– go to the next excerpt.

For the fluency evaluation, evaluators were asked to judge the quality of the lan-
guage on a 5-point scale, with a value of 1 for lowest and a value of 5 for highest
quality.

9.1.2 Comprehension questionnaire

After listening to an excerpt, judges had to fill out a comprehension questionnaire
of ten questions, five general questions and five more specific ones, for a total of 60
questions. Three types of questions were asked:

– simple factual (70%),
– yes/no (20%),
– list (10%).

This was done in order to diversify the difficulty of the questions and test the system
at different levels. After all the evaluations were done, an objective verification of the
answers, or validation, was performed by a Spanish native speaker, comparing the
judges’ answers to the reference answers. Another objective validation was also done
on the SLT and ASR parts in order to find where the information was lost, as well as
on the interpreter output.

Two kinds of criteria were used, the first with four values, for analysis and study,
the second with a correspondence with binary values, in order to present the results
in a clearer way. These criteria were used for all kinds of validations. The four values
are:

– 0: the information or answer is totally missing;
– 1: the information or answer is partially correct, but clearly incomplete;
– 2: the information or answer is really close or with some more information, but

which does not correspond exactly to the reference answer;
– 3: the information or answer is undeniably correct.

The binary values simplify the scale according to:

– for 0 and 1 = 0 : the information or answer is incorrect;
– for 2 and 3 = 1 : the information is correct.

9.2 Results

We compared the results of the human interpreter and the automatic system on the
lecture task with the results obtained by the TC-STAR system on the EPPS task under
otherwise identical conditions.
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Table 15 Human evaluation,
overall fluency: score between 1
(worst) and 5 (best)

Interpreter Automatic system

EPPS 4.03 2.05

Lectures 3.03 2.35

Table 16 Human evaluation,
overall comprehension, binary
classification: figures show
percentage of correct answers

Interpreter Automatic system

EPPS 74 64

Lectures 74 52

9.2.1 Fluency

Table 15 shows that while the fluency of the automatic system was judged to be slightly
better than the TC-STAR system, the fluency of human interpreters is worse on the
lectures than on the EPPS task. This is most likely due to the more spontaneous speech
style of lectures and a higher familiarity of interpreters with the topics and the typical
expressions used in the European Parliament.

For the human interpreter, the reasons for fluency errors are the lengthening of
words, hesitations, pauses between syllables and catching breath, other careless mis-
takes as well as self-corrections of wrong interpreting. For the automatic system, the
performance of the translation component contributes more to the fluency errors than
the performance of the ASR component. Some English words are not translated at all
and the word ordering (especially for compound words) is not always correct.

9.2.2 Comprehension

Table 16 shows the percentage of correct answers given by judges from the output of
interpreters and the automatic systems. The automatic systems perform worse than
the interpreters, and our system is worse than the TC-STAR system. This is clearly
in accordance with the difference in WER and Bleu between the EPPS and lecture
domains.

In addition, an objective verification of the presence of the information needed to
answer the questions was performed by a native Spanish speaker. Table 17 shows the
percentage of answers present or the maximal answers found in the Spanish trans-
lation output and in the intermediate outputs of the ASR and MT components. The
comparison shows that for the lecture task, the human interpreter was able to retain
85% of the information needed to answer all questions, while the judges, who could
listen to the interpreter output only once, then could answer 74% of the questions. The
automatic system presented 58% of the necessary information to the judges who then
answered 52% of the questions correctly; the ASR component already loses 17% of
the information, compared to 3% for the TC-STAR system.

To compare the translation quality of the automatic system with the quality of the
human interpreter objectively, the results were limited to the questions for which the
answers were included in the interpreter files, as shown in Table 18.
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Table 17 Human evaluation, objective comprehension: percentage of answers present in the output

Interpreter Automatic system MT ASR

EPPS 91 89 92 97

Lectures 85 58 65 83

Table 18 Human evaluation, comprehension of results limited to questions for which the answers were
included in the interpreter files: percentage of correct answers

Interpreter Automatic system TTS MT ASR

EPPS 80 66 91 93 97

Lectures 80 53 60 70 80

Here it can be seen that due to the limitation, not only are the interpreters getting
better (from 74% to 80%), but also the automatic systems are getting slightly better
(from 64% to 66% and from 52% to 53%). But again, there is already a loss of 20%
in the ASR.

10 Conclusion

In this paper, we have presented a first real-time simultaneous speech translation sys-
tem for spontaneous technical lectures. The system presented borrows heavily from
ongoing advances in domain-unlimited speech translation technologies and extends
these along five important additional dimensions:

1. the real-time requirement of simultaneous interpretation,
2. the disfluent nature of spontaneous (unprepared, not read speech) monologues or

lectures,
3. special terms, named entities, special expressions found in lectures on specialized

topics,
4. the problem of online sentence segmentation in real time (what is a sentence?),

and
5. the human factors of simultaneous interpretation, or how to deliver translation

output unobtrusively during an ongoing lecture.

As seen, adaptation is of utmost importance, but still takes considerable effort. To
make the system more flexible the automatic harvesting of related data from the Web
for topic adaptation has to be extended. Together with speaker profiles, the adapted
systems can be easily re-used as a basis for subsequent talks and further adaptation.

Although not perfect, an approach to resegmenting the ASR output was presented.
But the problem is of principle nature; only the MT system knows if a segment presents
a semantic unit ideal for translation or if it is better to wait for more input. Therefore,
future research should go into the direction of supporting the streaming approach as
used in speech recognition also in MT. This moves the segmentation into the MT
system.
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Extensive user experimentation appears to suggest that MT systems are already
achieving usable results. More interestingly, machine interpreters seem to be held
back only by ASR or MT component deficiencies, deficiencies that could conceivably
be improved with continuing advances and longer-term data collection. Human trans-
lators, by contrast, appear to be held back predominantly by the cognitive limitations
of doing this challenging task under the pressure of the real-time requirement drawing
on a limited human short-term memory, and these limitations are ones that cannot
easily be resolved. These intriguing results leave room for speculation on whether
superhuman simultaneous interpretation performance may one day be possible by
machine.
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